ARTICO ORIGINAL

ACTA MÉDICA PORTUCUESA 1998: 11: 1059-106+

AGREGAÇÃO DOS FACTORES DE RISCO CARDIOVASCULAR* numa população urbana do Porto

PEDRO VON HAFE, CARLA LOPES, M. JÚLIA MACIEL, HENRIQUE BARROS Serviços de Medicina 3 e de Cardiologia. Hospital de S. João. Porto.

RESUMO

O objectivo do estudo foi o de avaliar as prevalências de obesidade, diabetes mellitus nãoinsulinodependente, hipertensão arterial (HTA), hipertrigliceridemia, hipercolesterolemia e distribuição central da gordura, numa amostra probabilística de adultos. Duzentos e dez indivíduos das freguesias da área de influência do Hospital de S. João, Porto, foram seleccionados por método de amostragem através da marcação de números de telefone ao acaso. A obesidade foi definida como um índice de massa corporal ≥25 kg/m², a distribuição central da gordura se a razão entre o perímetro da cinta e o da anca > 0.80 nas mulheres e 1,0 nos homens. Foi feito o diagnóstico de diabetes se a glicemia em jejum foi ≥ 140 mg/dl e/ou pelo facto de o participante estar sob terapêutica. HTA foi definida se a pressão arterial sistólica foi ≥ 140 mm Hg e/ou a pressão arterial diastólica foi ≥ 90 mm Hg e/ou se o participante estivesse actualmente sob terapêutica. Hipertrigliceridemia e hipercolesterolemia se a concentração plasmática de triglicerídeos e de colesterol total fosse ≥ 200 mg/dl e/ou sob terapêutica específica. As prevalências totais de obesidade, DMNID, HTA, hipertrigliceridemia, hipercolesterolemia e padrão central de distribuição da gordura foram de 54.3%, 8.0%, 60.0%, 13.9%, 67.0% e 46.7% respectivamente. A prevalência de cada uma destas situações na sua forma isolada, isto é, não acompanhada de qualquer um dos outros factores de risco cardiovascular foi de 2.8% para a obesidade, 0.0% para a DMNID, 3.8% para a HTA, 0.5% para a hipertrigliceridemia, 12.0% para a hipercolesterolemia e 0.1% para a distribuição central da gordura. As grandes diferenças de prevalência entre as formas isoladas e combinadas nas situações analisadas indicam um grau elevado de sobreposição entre estes factores de risco cardiovascular e apoiam a hipótese de existência de um síndrome metabólico de agregação destes factores.

SUMMARY

Clustering of cardiovascular risk factors in an urban population of Oporto, Portugal

The aim of the study was to assess the total prevalence of obesity, non-insulin-dependent diabetes mellitus (NIDDM), hypertension, hypertriglyceridemia, hypercholesterolemia and central fat distribution, in a population-based survey. Two-hundred and ten individuals from the community were selected by random digit dialling. Obesity was defined as a body mass index ≥25 kg/m², central distribution of fat if the wast-to-hip ratio >0,80 in women and 1,0 in men, diabetes was diagnosed if fasting plasma glucose levels ≥140 mg/dl and/or currently under treatment, hypertension was defined as a systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure > 90 mm Hg and/or currently taking antihypertensive medications, hypertriglyceridemia was defined as a fasting serum triglyceride concentration ≥200 mg/dl and hypercholesterolemia

*Trabalho subsidiado pela "Comissão de Fomento da Investigação em Cuidados de Saúde", P. 89/95

Recebido para publicação: 25 de Fevereiro de 1997

as a fasting serum cholesterol level \geq 200 mg/dl and/or currently taking specific medication. Prevalence rates of obesity, NIDDM, hypertension, hypertriglyceridemia, hypercholesterolemia and cental fat distribution were 54.3%, 8.0%, 60.0%, 13.9%, 67.0% and 46.7% respectively. The prevalence of each of these conditions in its isolated form was 2.8% for obesity, 0.0% for diabetes, 3.8% for hypertension, 0.5% for hypertriglyceridaemia, 12.0% for hypercholesterolemia and 0.1% for the central fat distribution pattern. The large differences in prevalence between isolated and combined forms in the six disorders analyzed indicate a great overlap between these cardiovascular risk factors, and give epidemiologic support to a proposed metabolic syndrome.

INTRODUÇÃO

A relação entre a hipercolesterolemia ou o aumento das concentrações de LDL-colesterol¹⁻⁵, hipertensão arterial (HTA)⁶⁻⁸, diabetes⁹⁻¹⁵ e obesidade¹⁶ e o desenvolvimento de doença das coronárias tem sido evidenciada por múltiplos estudos. Em relação à hipertrigliceridemia a associação é controversa, com resultados contraditórios^{17,18}. O maior risco de desenvolvimento de doença cardíaca isquémica parece dever-se à associação de elevados níveis de triglicerídeos com baixas concentrações de HDL-colesterol¹⁹.

O efeito de cada um dos factores de risco cardiovascular é marcadamente influenciado pelos outros factores. que estão geralmente presentes²⁰. Nos últimos anos vários estudos têm chamado a atenção para o facto de os principais factores de risco cardiovascular - HTA, dislipidemia e diabetes mellitus não-insulinodependente (DMNID) se encontrarem associados no mesmo indivíduo^{21,22}. Um síndrome metabólico²³, incluindo estes factores de risco, foi descrito por vários autores. Esta agregação de factores de risco tem sido confirmada em várias populações²⁴⁻²⁹, incluindo estudos em criancas³⁰. O presente estudo foi realizado para testar a hipótese de os principais factores de risco cardiovascular se agregarem na população urbana da cidade do Porto, Portugal, facto que implica orientações particulares na prevenção das doenças cardiovasculares.

MATERIAL E MÉTODOS

Usou-se como espaço amostral o conjunto de indivíduos residentes em habitações com telefone, nas freguesias da área de influência do Hospital de S. João, e recorreu-se a um método de amostragem através da marcação de números de telefone ao acaso (*random digit dialing*). Avaliaram-se os primeiros 211 participantes, entre Novembro de 1995 e Julho de 1996. As informações foram obtidas através de um questionário estruturado, para aplicação indirecta, compreendendo questões gerais

referentes a aspectos de ordem demográfica e social (estado civil, anos de escolaridade, actividade profissional e outros), história médica (antecedentes pessoais e familiares de doença) e, para as mulheres, história obstétrica, além de questões relacionadas com características comportamentais (actividade física, hábitos tabágicos e alcoólicos, hábitos alimentares, aspectos psicossociais). Fez-se o registo de parâmetros correspondentes a dados antropométricos, pressão arterial, doseamentos sanguíneos e electrocardiograma. Aos indivíduos com idade igual ou superior a 65 anos foi aplicado o "Mini-mental state examination", segundo Folstein³¹, de forma a obter uma rápida avaliação de eventuais alterações cognitivas.

A estatura e o peso corporal foram medidos seguindo as recomendações da Conferência de Consenso de Airlie³². Calculou-se o Índice de Massa Corporal (IMC) dividindo o peso pelo quadrado da altura. Classificou-se a obesidade segundo Garrow³³ e a Organização Mundial de Saúde³⁴, baseada nos seguintes intervalos arbitrários do IMC: abaixo de 20; entre 20 e 24,9; 25 e 29,9; 30 e 39,9; e acima de 40 kg/m².

A pressão arterial foi medida segundo as técnicas e recomendações da American Heart Association³⁵, com três leituras realizadas em uma única ocasião. Para o diagnóstico de HTA foram seguidas as recomendações do quinto Joint National Committee (J.N.C. V)³⁶, tomando-se os valores limite de 140 mm Hg para a pressão arterial sistólica e 90 mm Hg para a pressão arterial diastólica, ou o facto de o participante estar medicado com anti-hipertensores.

Os estudos metabólicos foram realizados após 12 a 14 horas de jejum, entre as oito e as onze horas da manhã. As glicemias foram determinadas por métodos enzimáticos³⁷. Os doseamentos do colesterol e triglicerídeos foram realizados pelos métodos calorimétricos enzimáticos estandartizados^{38,39}. Os niveis de HDL-colesterol foram determinados após precipitação das lipoproteínas contendo apolipoproteinas B⁴⁰. As concentrações de

LDL-colesterol foram obtidas subtraindo o valor de HDL-colesterol à fracção com densidade superior a 1,006. Para o diagnóstico de dislipidemia seguiram-se as recomendações da European Atherosclerosis Society⁴¹, utilizando-se os valores limite de 200 mg/dl para o colesterol total e 200 mg/dl para os triglicerídeos, ou o facto de o indivíduo estar sob terapêutica hipolipidemiante. Fez-se o diagnóstico de diabetes quando a glicemia em jejum foi maior que 140 mg/dl, segundo os critérios de diagnóstico da OMS⁴², ou o facto de estar medicado com antidiabéticos orais ou insulina. O perímetro da cinta, ao nível da cicatriz umbilical, e o perímetro da anca foram medidos com fita métrica flexível não-distensível em posição horizontal até ao centímetro mais próximo, com os participantes em pé, sem pressionar os tecidos. O perímetro da cinta foi registada como a circunferência mínima a meia distância entre a apófise xifóide do esterno e a crista ilíaca, com o paciente a respirar normalmente, e o perímetro da anca como a circunferência máxima sobre os grandes trocanteres femorais. A razão cinta-anca foi calculada dividindo os dois perímetros. Uma razão cinta-anca maior que 1,0 para os homens e 0,8 para as mulheres definiu uma distribuição da gordura do tipo central⁴³.

No estudo, aprovado pela Comissão de Ética do Hospital de S. João, foram observadas as regras de conduta expressas na declaração de Helsínquia e a legislação nacional em vigor, sendo garantida a protecção e confidencialidade das informações pessoais recolhidas. Todos os participantes forneceram consentimento informado antes da realização da entrevista e todos os registos foram tratados separadamente da identificação.

O conjunto de informações recolhidas foi analisada de acordo com a metodologia estatística descritiva usual, após a sua informatização recorrendo ao programa EPInfo versão 6.02.

RESULTADOS

O quadro I mostra a distribuição dos participantes por sexo e idade. De salientar que mais de 40% dos participantes tinham idades superiores a 59 anos.

Quadro I - Distribuição dos participantes por sexo e idade

Sexo			
	Masculino	97 (46,0%)	
	Feminino	114 (54,0%)	
Idade			
	40-49	64 (30,3%)	
	50-59	57 (27,0%)	
	60-69	47 (22,3%)	
	≥ 70	43 (20,4%)	

A prevalência total de indivíduos com HTA foi de 60%, globalmente inferior no sexo masculino (p=0,799), mas mais alta nos grupos etários correspondentes à quinta e sexta décadas.

Dos participantes, 67% apresentavam hipercolesterolemia, 64% tinham concentrações elevadas de LDL-colesterol, 45% apresentavam níveis diminuídos de HDL-colesterol e em 13,9 % dos sujeitos as concentrações de triglicerídeos estavam aumentadas. Os valores médios de colesterol plasmático, em ambos os sexos e em todas as idades, encontram-se acima do valor admitido internacionalmente como ideal, ou seja, 200 mg/dl (Figura 1). As médias do colesterol do plasma são consistentemente mais elevadas no sexo feminino (237±40 mg/dl vs 220±40, p=0,01), sendo as concentrações mais elevadas observadas na sétima década.

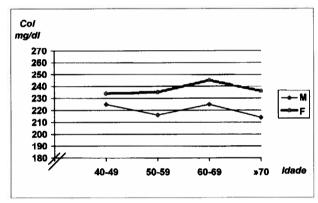


Fig. 1 - Valores médios de colesterol plasmático por sexo e idade.

De algum modo estas diferenças são devidas aos níveis significativa e consistentemente mais elevados de HDL-colesterol nas mulheres (Figura 2).

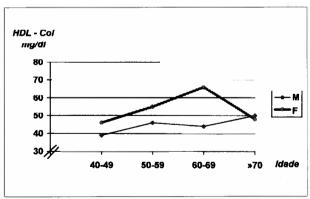


Figura 2 - Valores médios de HDL-colesterol por sexo e idade.

Por outro lado, as médias das concentrações de LDL-colesterol estão, em ambos os sexos, e mais acentuadamente no sexo feminino, muito acima dos valores recomendados (Figura 3).

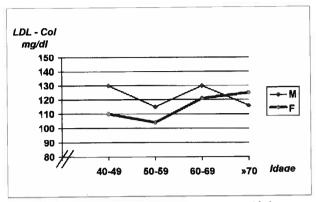


Figura 3 - Valores médios de LDL-colesterol por sexo e idade.

Em relação aos triglicerídeos, as médias estão substancialmente abaixo dos valores considerados como limite de risco, notando-se uma tendência para níveis mais elevados nos homens (Figura 4).

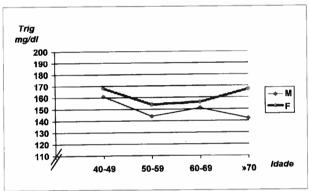


Figura 4 - Valores médios de triglicerídeos plasmáticos por sexo e

No Quadro II estão representadas as prevalências totais de obesidade, DMNID, hipertensão arterial, hipertrigliceridemia, hipercolesterolemia e obesidade andróide e as prevalências em associação dois a dois. Nesta

Quadro II - Prevalência dos factores de risco cardiovascular: prevalência total, isolada e associados dois a dois, de forma exclusiva. Entre parêntesis, prevalência global de associações de dois factores de risco

Prevalência (%)	Obesidade n=210	Diabetes n=200	HTA n=190	Htrig. n=194	Hcol n=200	Gor. C. n=210
Obesidade		0,5 (6,5)	1,2 (38,6)	0,0 (9,3)	4,0 (36,5)	1,4 (29,2)
Diabetes			0,0 (7,2)	0,0 (2.6)	0.0 (5,6)	0,0 (4,5)
НТА				0,0 (10,3)	5,8 (42,5)	1,0 (31,2)
Htrig					0,0 (19,4)	0,0 (15,7)
Hcol						4,5 (32,2)
Isolada	2,8	0,0	3,8	0,5	12,0	0,1
Total	54,3	8,0	60,0	13,9	67,0	46,7

^{*}Os totais a que se referem as prevalências diferem devido a falta de informação para alguns participantes.

Hcol: hipercolesterolemia. Htrig: hipertrigliceridemia. Gor. C.: Distribuição central da gordura (andróide)

população, em que se encontrou uma alta prevalência de obesidade, HTA e hipercolesterolemia, verificou-se que, do total de participantes estudados, somente 12 é que não apresentavam nenhum factor de risco, oito homens e quatro mulheres. A prevalência de cada um dos factores de risco considerados, isoladamente, isto é, sem estar associado a qualquer dos outros factores de risco, é muito baixa. Assim, só 2,8% dos obesos é que não tinham associados outros factores de risco. Não foi encontrado qualquer diabético que estivesse isento dos outros factores de risco. Somente 3,8% dos hipertensos é que apresentavam um aumento isolado da pressão arterial. Do mesmo modo, o aumento isolado dos triglicerídeos plasmáticos foi um achado muito raro (0,5%), e o mesmo se verificou com a obesidade andróide (0,1%). Além disso, as associações dois a dois eram menos frequentes do que o que seria de esperar pela sua associação probabilística (cálculos não mostrados). Assim, a prevalência da obesidade associada a um só dos outros factores considerados foi inferior a 1,5%, com excepção da associação à hipercolesterolemia, em que foi de 4,0%. Não foi encontrado nenhum diabético em que estivesse associada exclusivamente a HTA, hipertrigliceridemia, hipercolesterolemia ou obesidade andróide, e só 0,5% dos casos de diabéticos obesos é que não tinham mais factores de risco associados. Da mesma forma, a prevalência de HTA associada em exclusivo a qualquer dos outros factores considerados foi muito baixa, inferior a 1,3%, com a excepção da associação a hipercolesterolemia, em que foi de 5,8%. Não houve nenhum caso de hipertrigliceridemia em que estivesse associado somente mais um factor de risco. Verificou-se, no entanto, uma alta prevalência de associações triplas ou múltiplas entre estes factores de risco.

DISCUSSÃO

O primeiro resultado que ressalta da presente análise é o alto grau de sobreposição entre as seis condições consideradas (obesidade, DMNID, HTA, hipertrigliceridemia, hipercolesterolemia e distribuição central da gordura avaliada por antropometria) nesta população urbana de uma cidade portuguesa. Cada uma destas situações de aumento de risco cardiovascular é definida por um valorlimite de uma variável contínua, estabelecido de forma arbitrária (índice de massa corporal, pressão arterial sistólica e diastólica, glicemias, concentrações de colesterol, triglicerídeos e razão dos perímetros da cinta e da anca). A sobreposição dos vários factores de risco analisados está, naturalmente, dependente dos valores-limite estabelecidos, que foram aqueles considerados interna-

cionalmente como aqueles que definiam o estado de doença ou o limiar de risco. No entanto, alterando os valores-limite escolhidos só iria alterar o padrão de sobreposição de forma quantitativa, e não qualitativa.

Estes resultados são consistentes com os encontrados em outras populações²⁴⁻²⁹, apesar de a prevalência total de alguns dos factores de risco ser substancialmente diferente. Assim, por exemplo, no San Antonio Heart Study²⁵ a prevalência total de HTA e hipercolesterolemia foi somente de 9,8% e 9,2%, respectivamente, enquanto que a prevalência de obesidade, DMNID e hipertrigliceridemia foi similar, 54,3%, 9,3% e 10,3%, respectivamente.

Os presentes resultados confirmam as teses propostas por vários autores, que defendem que os factores de risco cardiovascular se interrelacionam num síndrome metabólico específico²³. As primeiras descrições de um síndrome deste tipo incluiam a associação de DMNID, dislipidemia, hiperuricemia, distribuição central da gordura e aterosclerose^{44,45}. Reaven²¹ divulgou a existência de um síndrome metabólico, a que propôs o nome de síndrome X, em que havia a associação de HTA, dislipidemia e hiperglicemia com hiperinsulinemia, tendo como característica comum a resistência à acção da insulina. Na presente fase do estudo não foi avaliada a insulina plasmática, mas a quantificação das insulinemias em soros conservados poderá revelar informações adicionais úteis para a compreensão das interrelações entre os vários factores de risco cardiovascular. Kaplan⁴⁶ inclui neste síndrome a distribuição central, visceral ou andróide da gordura corporal. Na presente amostra esse padrão de distribuição da gordura corporal estava presente em 46,7% dos participantes e em cerca de um terço dos obesos, um terço dos hipertensos e um terço dos hipercolesterolémicos.

Stevo Julius postula que a ligação entre a HTA e a resistência à insulina é de natureza hemodinâmica, tendo por base a actividade aumentada do sistema nervoso simpático (SNS)⁴⁷. Este aumento da actividade do simpático poderá estar, aliás, na base de toda a interrelação e ser a anomalia que se verifica a montante de todas as outras componentes do síndrome²³.

A presente análise não pode discernir qualquer pista sobre a natureza - genética, ambiental ou de interacção genética-ambiental - das associações observadas entre os factores de risco cardiovascular. No entanto, o que se pode concluir é que, para todas as condições avaliadas, com a excepção relativa da hipercolesterolemia, a ocorrência de cada uma delas como situação isolada é um acontecimento extremamente raro. Assim, o diagnóstico

de qualquer uma destas situações obriga ao rastreio de todas as outras e o facto de apresentarem passos intermédios comuns reforça a importância de estratégias preventivas globais mais do que a actuação isolada sobre cada um dos factores.

BIBLIOGRAFIA

- 1. NEATON JD, BLACKBURN H, JACOBS D et al: Serum cholesterol level and mortality findings for men screened in the Multiple Risk Factor Intervention Trial. Arch Intern Med 1992; 152:1490-500.
- ANDERSON KM, CASTELLI WP, LEVY D: Cholesterol and mortality: 30 years of follow-up from the Framingham Study. JAMA 1991; 265:78-83.
- 3. STAMLER J, DYER AR, SHEKELLE RB, NEATON J, STAMLER R: Relationship of baseline major risk factors to coronary and all-cause mortality, and to longevity: findings from long-term follow-up of Chicago cohorts. Cardiology 1993; 82:191-222.
- 4. KEYS A (ed): Coronary heart disease in seven countries. Circulation 1970; 41 (Suppl 1):1-211.
- 5. ROBERTSON TL, KATO H, RHOADS GG et al: Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawai and California. Incidence of myocardial infarction and death from coronary heart disease. Am J Cardiol 1977; 39:239-49.
- 6. STAMLER J, STAMLER R, NEATON JD: Blood pressure, systolic and diastolic, and cardiovascular risks: U.S. population data. Arch Intern Med 1993; 153:598-615.
- 7. MACMAHON S, PETO R, CUTLER J et al: Blood pressure, stroke, and coronary heart disease. 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 1990; 335:765-74.
- 8. National High Blood Pressure Education Program Working Group report on primary prevention of hypertension. Arch Intern Med 1993; 153:186-208.
- 9. KANNEL WB, MCGEE DL: Diabetes and cardiovascular risk factors: The Framingham Study. Circulation 1979; 59:8-13.
- 10. LAAKSO M, RÖNNEMAA T, LEHTO S, PUUKKA P, KALLIO V, PYÖRÄLÄ K: Does NIDDM increase the risk for coronary heart disease similarly in both low- and high-risk populations? Diabetologia 1995; 38:487-93.
- 11. PAN W-H, CEDRES LB, LIU K et al: Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol 1986; 123:504-56.
 12. JARRETT RJ, MCCARTNEY P, KEEN H: The Bedford Survey: ten year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia 1982; 22:79-84.
- 13. BUTLER WJ, OSTRANDER LD, CARMAN WJ, LAMPHIEAR DE: Mortality from coronary heart disease in the Tecumseh Study: long-term effect of diabetes mellitus, glucose tolerance and other risk factors. Am J Epidemiol 1985; 121:541-7.
- 14. ESCHWÈGE E, RICHARD JL, THIBULT N et al: Coronary heart disease mortality in relation with diabetes, blood glucose and plasma insulin levels: the Paris Prospective Study, ten years later. Horm Metab Res Suppl 1985; 15:41-6.
- 15. KUUSISTO J, MYKKÄNEN L, PYÖRÄLÄ K, LAAKSO M: Non-insulin-dependent diabetes and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1994; 43:960-7.
- 16. HUBERT HB, FEINLEIB M, MCNAMARA PM, CASTELLI WP: Obesity as an independent risk factor for cardiovascular disease. A 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983; 67:968-77.
- 17. AUSTIN MA: Plasma triglyceride as a risk factor for coronary heart disease: the epidemiologic evidence and beyond. Am J Epidemiol 1989; 129:249-59.
- 18. CRIQUI MH, HEISS G, COHN R et al: Plasma triglyceride level

- and mortality from coronary heart disease. N Engl J Med 1993; 328:1220-5.
- 19. MANNINEN V, TENKANEN L, KOSKINEN P et al: Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study: Implications for treatment. Circulation 1992; 85:37-45.
- 20. WILSON PWF: Established risk factors and coronary artery disease: The Framingham Study. Am J Hypertens 1994; 7:7S-12S.
- 21. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-607.
- 22. DEFRONZO RA, FERRANNINI E: Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14:173-94.
- 23. VON HAFE P, CERQUEIRA-GOMES M: O síndrome metabólico cardiovascular. Endocr Metab & Nutr 1994; 3(6):341-51.
- 24. ZAVARONI I, BONORA E, PAGLARI M et al: Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med 1989; 320:702-6.
- 25. FERRANNINI E, HAFFNER SM, MITCHELL BD, STERN MP: Hyperinsulinemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia 1991; 34:416-22.
- 26. MANOLIO TA, SAVAGE PJ, BURKE GL et al: Association of fasting insulin with blood pressure and lipids in young adults: The CARDIA Study. Arteriosclerosis 1990; 10:430-6.
- 27. JULIUS S, JAMERSON K, MEJIA A et al: The association of borderline hypertension with target organ changes and higher coronary risk. Tecumseh Blood Pressure Study. JAMA 1990; 264:354-8.
- 28. CAMBIEN F, WARNET J-M, ESCHWÈGE E, JAQUESON A, RICHARD JL, ROSSELIN G: Body mass, blood pressure, glucose and lipids: does plasma insulin explain their relationships? Arteriosclerosis 1987; 7:197-202.
- 29. MCKEIGUE PM, SHAH B, MARMOT MG: Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991; 337:382-6.
- 30. BURKE GL, WEBBER LS, SRINIVASAN SR, RADHAKRI-SHNAMURTHY B, FREEDMAN DS, BERENSON GS: Fasting plasma glucose and insulin levels and their relationship to cardiovascular risk factors in children: Bogalusa Heart Study. Metabolism 1986; 35:441-6.
- 31. FOLSTEIN MF, FOLSTEIN SE, MCHUSH PR: "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psych Res 1975; 12:189-98.
- 32. The Airlie (VA) consensus conference. In Lohman T, Roche A, Martorel R, eds. Standardization of anthropometric measurements.

- Human kinetics publishers, Champaign 1988; 39-80.
- 33. GARROW JS: Treat Obesity Seriously: A Clinical Manual. Churchill Livingstone, Edinburgh, 1981.
- 34. World Health Organization. Measuring Obesity: Classification and Description of Anthropometric Data. Report on a WHO Consultation on the Epidemiology of Obesity. WHO Regional Office for Europe, Nutrition Unit, Copenhagen, 1988.
- 35. FROHLICH ED, GRIM C, LABARTHE DR, et al: Recommendations for human blood pressure determination by sphygmomanometers: report of a special task force appointed by the Steering Committee, American Heart Association. Hypertension 1988; 11:209A-222A.
- 36. The Fifth Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC V). Arch Intern Med 1993; 153:154-83.
- 37. RICHTRICH R, DAUWALDER H: Zur bestimmung der plasmaglukosekonzentration mit der hexokinase-glucose-6-phosphat-dehydrogenase-methode. Schweiz Med Wochenschr 1973; 101:615-8.
- 38. ALLAIN CC, POON LS, CHAN CSG, RICHMOND W, FU PC: Enzymatic determination of total serum cholesterol. Clin Chem 1974; 20:470-5.
- 39. BUCOLO G, DAVID H: Quantitative determination of serum triglycerides by use of enzymes. Clin Chem 1973; 19:476-82.
- 40. WARNICK GR, ALBERS JJ: A comprehensive evaluation of the heparin-manganese precipitation procedure for estimating high density lipoprotein cholesterol. J Lip Res 1978; 19:65-76.
- 41. European Atherosclerosis Society. Prevention of coronary heart disease scientific background and new clinical guidelines. Nutr Metab Cardiovasc Dis 1992; 2:113-54.
- 42. Diabetes mellitus: report of a WHO Study Group. World Health Organ Tech Rep Ser 1985; 727:9-17.
- 43. STUNKARD AJ: Current views on obesity. Am J Med 1996; 100:230-6.
- 44. VAGUE J: La différenciation sexuelle, facteur déterminant des formes de l'obésité. Presse Méd, 1947; 55:339-40.
- 45. KISSEBAH AH, EVANS DJ, PEIRIS A, WILSON CR: Endocrine characteristics in regional obesities: role of sex steroids. In: J. Vague et al., eds. Metabolic Complications of Human Obesities. Elsevier Science Publishers, 1985; 115-30.
- 46. KAPLAN NM: The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989; 149:1514-20.
- 47. JULIUS S, GUDBRANDSSON T, JAMERSON K, et al: The hemodinamic link between insulin resistance and hypertension. J Hypertens 1991; 9:983-6.