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RESUMO
Na área da oncologia clínica, a sequenciação de nova geração (NGS) foi implementada com o objetivo de contribuir para o diagnós-
tico, prognóstico e orientação terapêutica. A utilização de NGS em oncologia molecular é vasta, focalizando-se estas recomendações 
nas: normas laboratoriais para painéis genéticos direcionados (mutações somáticas) e na orientação terapêutica baseada em NGS 
de cancro do pulmão e cancros raros, nomeadamente sarcomas e cancros de origem desconhecida. Para que sejam obtidos re-
sultados de NGS com a qualidade que permita a sua correta interpretação, devem ser abordados múltiplos controlos de qualidade 
na fase pré-analítica que disponibilizem informação sobre o tamanho e celularidade do tumor, processamento e descalcificação de 
tecidos, fração tumoral, viabilidade do tumor, fixadores e coloração utilizados. A comunicação entre os diferentes intervenientes no 
processo, em particular entre os clínicos e o laboratório também contribui, de forma inequívoca, para a interpretação dos resultados 
de NGS. Todos os doentes com cancro do pulmão de não pequenas células não escamoso devem ser testados com um painel de 
NGS, que deve incluir não só genes com terapias dirigidas aprovadas (ALK, BRAF, EGFR, MET, NTRK, RET e ROS1), mas também 
genes com alterações genómicas identificadas como potenciais alvos terapêuticos (HER2 e KRAS). Dada a escassez de evidência 
científica sobre a utilização de NGS em tumores raros, recomenda-se a realização de painéis genómicos abrangentes que poderão 
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ABSTRACT
Next-generation sequencing (NGS) has been implemented in clinical oncology for diagnosis, prognosis, and therapeutic guidance. 
Among the various NGS applications in molecular oncology, we focused on the following topics: laboratory standards for targeted 
gene panels (somatic mutations) and therapeutic guidance based on NGS of lung cancer and rare cancers, namely sarcomas and 
cancers of unknown primary. Multiple quality control checkpoints should be addressed in the pre-analytical phase for good quality and 
interpretation of the NGS results. It includes tumor size and cellularity, tissue processing and decalcification, tumor fraction, tumor 
viability, fixatives, and staining. Communication between clinicians and laboratory support is also essential. In lung cancer, all patients 
with non-squamous non-small cell lung cancer should be tested with a NGS panel, and it should include not only genes with approved 
targeted therapies (ALK, BRAF, EGFR, MET, NTRK, RET, and ROS1) but also genes with potentially actionable genomic alterations 
(HER2 and KRAS). Since there is a lack of extensive knowledge regarding the use of NGS in rare tumors, performing comprehensive 
genomic profiling panels to better manage the disease is recommended. Moreover, other patients with other incurable solid tumors 
may benefit from being included in biomarker-driven clinical trials. Multidisciplinary tumor boards with the participation of experts with 
the ability to integrate genomic profiling data are essential to tailor the best strategy for each patient. Considering that there are no 
national guidelines, this article aims to guide laboratory and clinical practice for the use of NGS in the context of lung cancer, rare 
tumors, and cancer of unknown primary in Portugal.
Keywords: High-Throughput Nucleotide Sequencing; Lung Neoplasms/genetics; Neoplasms, Unknown Primary/genetics; Sarcoma/
genetics
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INTRODUCTION
 Molecular mechanisms that can impact tumor initiation, 
growth, progression, and metastasis1 have become clini-
cally valuable with the advance of targeted therapies and 
diagnostic tools, contributing to precision medicine.2 
 When assessed by hematoxylin-eosin staining, the pa-
thologist assesses the morphology of the tumor tissue and 
the pattern of expression in order to provide an overview of 
tissue characteristics.3 Although some biomarkers can be 
assessed by immunohistochemistry (IHC) with a predictive 
result (e.g., ER, PR, HER2), the detailed molecular charac-
terization is not entirely clarified this way, and developments 
in sequencing techniques allow for a more detailed under-
standing of the tumor molecular mechanisms.3 
 Next-generation sequencing (NGS) is a technology that 
decodes genetic information easier, faster, and at a lower 
cost compared to than Sanger sequencing. The term NGS 
includes a group of technologies, also called massively par-
allel sequencing, that share the ability to simultaneously an-
alyze multiple genomic regions through data capture from 
millions of sequencing reactions.4-7 This technique is linked 
with bioinformatic tools which are essential for analyzing the 
vast amount of generated data.8 These data can be used to 
support patient management.3 
 NGS is a widely accepted molecular biology technique 
that can analyze DNA and RNA, contributing to an accu-
rate diagnosis and the detection of actionable mutations 
that sensitize the tumor to specific therapies.2,9 Its appli-

cability ranges from clinical research, usually with broader 
approaches like whole-genome, whole-exome, and tran-
scriptome, to more focused clinical applications by targeted 
gene panels evaluation.2 The NGS workflow comprises 
three main processes: library preparation, sequencing, and 
bioinformatics data analysis.10  
 Among the various NGS applications in molecular on-
cology, we will focus on laboratory standards for targeted 
gene  panels (somatic mutations) and their use in the di-
agnosis, therapeutic guidance, and prognosis of lung carci-
nomas and rare tumors such as sarcomas and cancers of 
unknown primary. 
 The aim of this article is to provide recommendations for 
the use of NGS in Portuguese clinical practice since there 
are currently no national guidelines. 

Practical recommendations for NGS from an expert 
group
 NGS is a relatively new field in solid tumors, and there-
fore few guidelines are currently available,11,12 includ-
ing the latest 2020 ESMO guidelines.13 The genes to be 
tested depend on the testing purpose and will also rely on 
the availability of targeted treatments and reimbursement 
schemes that are different in each country.13 The elected 
method should be an assay detecting clinically actionable 
genomic alterations, defined by the clinical diagnosis and/or 
availability of targeted drug therapies. Genomic alterations 
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contribuir para uma melhor gestão da doença. Adicionalmente, outros doentes, com outros tumores sólidos incuráveis, podem bene-
ficiar da inclusão em ensaios clínicos orientados por biomarcadores. A realização de reuniões multidisciplinares com a participação 
de diferentes especialistas capazes de integrar dados dos perfis genómicos são fundamentais para a escolha da melhor estratégia 
para cada doente. Considerando que não existem recomendações nacionais, este artigo visa orientar a prática laboratorial e clínica 
para a utilização de NGS em tumores do pulmão, raros e cancros de origem primária desconhecida em Portugal.
Palavras-chave: Neoplasias Primárias Desconhecidas/genética; Neoplasias do Pulmão/genética; Sarcoma/genética; Sequenciação 
de Nucleotídeos em Larga Escala

Figure 1 – Next-generation sequencing workflow
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associated with acquired resistance to target-based agents 
are also being included in genomic panels.11

 Although NGS is a powerful technique to assess clini-
cally relevant genetic alterations in tumors, some issues 
need to be addressed in the NGS workflow (Fig. 1), namely 
in its implementation, laboratory standards, and data inter-
pretation.

NGS
 What pre-analytical conditions should be met to 
perform NGS? 
 Recommendation: The multiple quality control check-
points in the pre-analytical phase should include tumor 
size and cellularity, tissue processing and decalcification, 
tumor fraction, tumor viability, and fixatives and staining. In 
a patient with multiple specimens available from different 
timepoints, the most recent one should be used for NGS. 
Morphologic control is one of the leading quality control 
checkpoints that could significantly impact the reliability and 
interpretation of NGS results. Testing procedures needed to 
be validated locally and that include defining minimum DNA 
input and minimum tumor cell content. Multidisciplinary 
communication is essential for the optimization of specimen 
acquisition and processing. 

The success of molecular diagnostics in oncology depends 
on various factors. One of the most important is the prop-
er selection of tumor samples, the quantity, the quality of 
the tumor specimen, and tumor cellularity.14,15 Every stage 
from collecting the specimen to its analysis can influence 
NGS results, treatment decisions, and clinical outcomes. 
One of the main challenges in the molecular oncology of 
solid tumors is the quality of nucleic acids, as the process 
of formalin fixation of specimens could compromise DNA 
and RNA integrity through chemical cross-linking of protein 
and nucleic acids.16,17 Nevertheless, with the improvement 
of methods of processing formalin-fixed paraffin-embedded 
(FFPE) material, that is no longer a limitation for the use 
of NGS as routine testing in these samples.11,18 Moreover, 
nucleic acid yield could be low due to limited tissue obtained 
through fine-needle aspiration and core-needle biopsy.15 
 Therefore, there is a need to standardize pre-analytical 
conditions to ensure the accuracy and reliability of the re-
sults, which increases the credibility and the use of NGS in 
clinical practice.
 The pre-analytical factors associated with the success 
of NGS are the cold ischemia time, tissue fixation, process-
ing and storage, sample size and cellularity, tumor cell frac-
tion, tumor viability, use of decalcification, and other factors 
such as the presence of blood and mucin.15 
 Type of procedure: Tumor samples can be obtained 
by surgical resection, endobronchial biopsy excisions, 
fine-needle aspiration, and core-needle biopsy.15 The first 
is associated with a larger tumor section and higher DNA 
yield.15,19

 Tumor site: After adjusting for tumor size and, in the ab-
sence of decalcification, the various solid tumors, sampled 

by the different procedures showed similar NGS success 
rates.19 
 Tissue processing and storage: Direct preservation of 
tissue specimens ideally follows a controlled and defined 
process, such as formalin (buffered formalin at 10%) fixa-
tion beginning immediately after removal.20,21 The volume of 
buffered formalin should be adequate since the fixation time 
is dependent on the specimen volume (minimum six hours/ 
maximum 72 hours).21,22 The preferred tissue conservation 
methods to preserve the molecular profiles of cells and cy-
tology samples are FFPE tumor tissue and cryopreserva-
tion (-80ºC to -190ºC).23,24

 Tumor size and cellularity: One of the most important 
pre-analytical requirements for a reliable NGS assay is 
the specimen’s quantity and quality. The obtained material 
should be sufficient for a correct and accurate morpholog-
ic diagnosis and control and posterior biomarker analysis 
through NGS.14,24 The size of the tumor area and the num-
ber of viable tumor cells will determine the DNA yield.15,19 
The morphological diagnosis and cellularity estimation in 
tissue and cytological material are vital to the correct ex-
ecution of NGS.11 The sample should include as many tu-
mor cells as possible, but NGS works with very low tumor 
cell content. Each laboratory should define its threshold. If a 
sample is below the defined threshold and there is a nega-
tive result, then there is a risk of being a false negative and 
that should be clearly stated in the report. 
 A molecular pathologist, using macrodissection, should 
guide the nucleic-acid extraction area, marking tumor tissue 
and normal tissue, thus increasing the yield of the sequenc-
ing technique. It requires specific staff training and institu-
tions should have dedicated pathologists to perform this 
task.14,15 
 Tumor fraction: Another important point to consider is 
the proportion of tumor cells in the specimen, the so-called 
tumor fraction or tumor purity.14  Diverse NGS assays could 
have different tumor fraction requirements due to different 
NGS platforms’ distinctive technical sensitivities. Ideally, a 
NGS assay should be able to detect a mutation with a vari-
ant allele frequency (VAF) as low as 5%. Given the hetero-
zygous nature of somatic mutations in most tumors and the 
possibility of genetic intratumor heterogeneity, the selected 
specimen area should have a tumor cell fraction of at least 
20%.15,25-29 In small specimens, such as core needle biop-
sies and cytology samples, NGS could be less successful 
than in larger samples such as the ones obtained from re-
section and excisions. Other types of samples may be ac-
ceptable as long as they are validated locally in the labora-
tory. 
 Tumor viability: The viability of the tumor tissue is es-
sential for the success of NGS. Necrosis can occur among 
the different tumor types and should be carefully analyzed 
and interpreted.15

 Decalcification of bone specimens: Before decalcifica-
tion, it is necessary to perform an adequate tissue fixation.15 
Only bony samples that undergo formic-acid- or EDTA-
based decalcification procedures are adequate for both 
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morphologic analysis and NGS.30 A solution consisting of 
formic acid (88% formic acid diluted 1:10 in distilled water) 
with constant stirring can be used for tissue decalcifica-
tion after formalin fixation. For checking the decalcification 
process, x-ray analysis may be performed daily until decal-
cification is demonstrated by radiographic evidence. For 
neutralization of the decalcified block, a solution of 0.3% 
ammonium hydroxide in 80% ethyl alcohol can be used.19

 How to implement NGS in a diagnostic laboratory?
 Recommendation: Quality control should be imple-
mented for all pre-analytic, analytic, and interpretation pro-
cedures. If that is not possible, an external molecular biol-
ogy laboratory is the best option. 

 It is essential to test and validate the method before the 
implementation of any NGS-based diagnostic test. Besides 
all the pre-analytical conditions included in the previous 
section that should be under periodical quality control as-
sessment, the assay’s adequacy to cover clinically relevant 
variants to a sufficient depth for variant calling, as well as 
optimization of the bioinformatics pipeline to detect relevant 
mutations, are essential.11,31 This typically includes an as-
sessment of sensitivity, specificity, and reproducibility, in 
addition to other performance characteristics as required 
by the relevant laboratory-certifying authority. The perfor-
mance characteristics of NGS assays can be readily deter-
mined for the most common somatic alterations. However, 
the reliability of detection for uncommon somatic alterations 
or specific categories of mutations, such as large insertion-
deletions (indels) or certain chromosomal alterations may 
be more challenging to establish. Hence, laboratories 
should have procedures to verify any unexpected results, 
namely those that are discordant with other results, equivo-
cal, or of compromised confidence. These include obtaining 
alternative samples, testing with an orthogonal methodol-
ogy with a different selectivity of the primary NGS method, 
or testing in another laboratory. If the local molecular biol-
ogy laboratory does not have sufficient capacity, an external 
NGS laboratory with quality control is the best option. 

 Which information should be given to the molecular 
biology laboratory?
 Recommendation: Information to be given to the mo-
lecular biology laboratory should include:

1. Patient identification, with at least two identifiers.
2. Diagnosis or potential diagnosis, with staging infor-

mation, if available. 
3. Test results from other previously performed mole-

cular tests, if available.
4. Specimen information, type of specimen, tumor cell 

content.
5. The objective of the test:

a. Differential diagnosis? 
b. Need to distinguish between two primary tumors 

or between one primary tumor and one metasta-
sis?

c. Therapy decision at diagnosis?
d. Therapy decision after resistance acquisition to 

previous targeted therapy?
 (describing previous therapies and their se-

quence)
e. More comprehensive biomarker testing for pos-

sible inclusion in a clinical trial or off-label thera-
py?

 For optimizing the NGS analysis and consequently ob-
taining better results for patients, communication between 
the clinic, pathology laboratory and molecular biology labo-
ratory is key.

 Which information should be included in the NGS 
report sent to the clinician?
 Recommendation: The report should be standardized 
and include all the essential information for the correct in-
terpretation of the results. An example of an appropriate re-
port for clinicians is included in the Appendix 1 (Appendix 1: 
https://www.actamedicaportuguesa.com/revista/index.php/
amp/article/view/17680/Appendix_01.pdf). 

 There are international diagnostic standards such as 
ISO 15189 and guidelines that should be followed to re-
port the results.11,12,31-34 The length of the report should not 
exceed one page, be easily read, and contain the following 
essential information: patient identification, sample type, 
tissue/tumor type, tissue sample identification, the restate-
ment of the clinical question, percentage of tumor sample 
content used for NGS, depth coverage, NGS method used, 
sensitivity of the method, reference sequences for tested 
genes, results using the Human Genome Variation Society 
mutation nomenclature, how/where additional information 
can be obtained, biological and clinical interpretation of 
the results and conclusion.11 Information on the variant al-
lele frequencies (VAFs) may also be provided. Results and 
conclusions according to the clinical question should be 
highlighted. Moreover, the results section should be divided 
into clinical, clinical trials, and research domains.11 Clini-
cal domain: variants with a current approved therapeutic 
indication or used for diagnosis, prognosis, or therapeutic 
monitoring; clinical trials domain: variants that can predict 
response to new drugs and allow the enrollment in a clinical 
trial; research domain: variants of uncertain clinical signifi-
cance, with an unknown biological role in oncogenesis.11

 Decisions based on the NGS results should consid-
er all other pathology and clinical data and eventually be 
discussed in a multidisciplinary or molecular tumor board 
(MTB) context.

Lung cancer
 Lung cancers are classified into two main histological 
types: small cell lung cancer (SCLC) and non-small cell 
lung cancer (NSCLC). NSCLC has a higher prevalence ac-
counting for 85% of bronchogenic carcinomas.29,35 Among 
NSCLC, adenocarcinoma and squamous cell carcinoma 
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mutation-positive NSCLC.50 Despite these treatment ad-
vances, patients diagnosed at this stage are at high risk of 
relapse and survival remains low.51

 At the time of progression, genomic-guided treatments 
are becoming increasingly relevant. Although tissue re-
biopsy to repeat molecular testing is not always feasible, 
blood liquid biopsy is likely to become a validated routine 
alternative.  

 Which are the genes that should be included in the 
NGS panel? 
 Recommendation: The initial testing NGS panel should 
include genes with clinical relevance: 

• genes with approved targeted therapies: ALK, BRAF, 
EGFR, MET, NTRK, RET and ROS1 

• other oncodrivers: HER2 and KRAS.

 Recently published ESMO guidelines for NGS recom-
mend performing tumor multigene NGS to assess level I 
genomic alterations.13 Level I genomic alterations include 
EGFR, MET, and BRAF mutations and ALK, ROS1, NTRK, 
and RET fusions.13 Additionally, larger panels can be used 
considering the total cost burden strategy, assuming an 
accurate ranking of alterations is reported. For clinical re-
search centers, performing multigene sequencing panels in 
molecular screening programs is highly recommended. It 
will increase access to innovative drugs and speed up clini-
cal research.13 
 EGFR somatic mutations have been reported in 20% 
of Caucasians with NSCLC, and therapies with tyro-
sine kinase inhibitor (TKI) targeting EGFR were pioneers 
in the era of targeted therapy.52,53 In Portuguese patients 
with metastatic NSCLC, 14% harbor EGFR somatic muta-
tions.54 Among the first-generation EGFR-TKI are gefitinib 
and erlotinib which have been used as first-line therapy in 
patients harboring EGFR mutations (exon 21 L858R and 
exon 19 deletions).55,56 Second generation EGFR-TKI such 
as afatinib and dacomitinib inhibit the four members of the 
ERBB family.57,58 Resistance to first- and second-generation 
EGFR-TKI is common amongst patients and is mediated 
by the T790M resistance mutation in half of them.53 Third-
generation irreversible EGFR-TKI targeted therapy, such 
as osimertinib, is selective for EGFR-TKI sensitizing and 
T790M resistance mutations.59-61 Treatment with osimertinib 
as second-line therapy requires the detection of the EGFR 
T790M mutation in a liquid biopsy or in a tissue re-biopsy. If 
a liquid biopsy is chosen as the initial test, and if negative, a 
tissue re-biopsy should be performed due to sensitivity limi-
tations, if feasible.62 The search for mechanisms of resis-
tance to EGFR-TKI therapy should not be limited to T790M 
EGFR mutations, as other genes are involved as well, in-
cluding HER2, BRAF (V600E), KRAS (G12D/C, A146T), 
and PIK3CA mutations, SPTBN1-ALK fusions and MET 
amplifications.53 Moreover, as resistance to osimertinib also 
occurs, other mutations in the EGFR gene, such as C797S, 
should also be searched for. Therefore, NGS testing in this 
context should be performed.42 

are the most common histologic types.35

 In which histological type of lung cancers should 
NGS be performed? 
 Recommendation: Due to the expanding number of 
actionable genomic alterations, all non-squamous NSCLC 
should be tested with a NGS panel. Exceptions may be 
considered in the multidisciplinary meeting. 

 NGS allows the identification of genomic alterations 
down to single-base-pair resolution with a high level of pre-
cision and accuracy.35 This leads to therapeutic progress 
and the development of new drugs.36 Approximately 69% 
of patients with NSCLC could have a potentially actionable 
molecular target.37 
 In adenocarcinoma, the most commonly mutated on-
cogenes are KRAS, EGFR, PIK3CA, MET, and BRAF; the 
mutated tumor suppressors are TP53, STK11, KEAP, NF1, 
RB1, and CDKN2A.38 Gene fusion and rearrangement of 
ALK, ROS1, NTRK1, NRG1, FGFR4, ERBB4, and RET 
are also important modifications in lung adenocarcinoma, 
with ALK, ROS1, NTRK and RET already having approved 
targeted therapies.38-43 Squamous-cell carcinoma is char-
acterized by fewer mutations in genes coding for recep-
tor tyrosine kinase and a higher frequency of mutations in 
tumor suppressor genes such as TP53, PTEN, NOTCH1, 
and RB1.44 FGFR-gene family rearrangements have been 
reported in squamous-cell cancer and can be targetable.45 
While the known adenocarcinoma targetable alterations are 
well characterized, personalized medicine in the treatment 
of squamous cell carcinoma is lagging far behind adeno-
carcinoma and NGS could be a powerful technique to iden-
tify genetic alterations and allow easy integration in clinical 
practice.46

 At what disease stage should NGS be performed? 
 Recommendation: All patients with advanced disease 
must be tested. Patients with limited disease, candidates 
for adjuvant targeted therapies e.g., EGFR, should be con-
sidered for testing. Moreover, patients with limited disease 
are at high risk of progression; thus, we recommend that 
earlier testing, at diagnosis, may be considered. At the time 
of progression, in the setting of targeted therapy, a new 
NGS test is recommended. 

 The recommended treatment for patients with stage 
I-II NSCLC is surgery complemented by adjuvant chemo-
therapy for some patients.47 For patients with locally ad-
vanced (stage IIIA-B) unresectable tumors, stereotactic 
body radiotherapy with concurrent chemotherapy delivery 
is recommended.47 More recently, durvalumab (anti-PD-L1 
antibody) has been approved as maintenance therapy in 
this setting.48,49 In these earlier stages of the disease, there 
is currently no role for targeted therapy outside clinical tri-
als. However, this is expected to change shortly, with the 
ADAURA trial results showing a disease-free survival (DFS) 
advantage for using osimertinib in stages IB-IIIA EGFR 
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 ALK rearrangements occur in 5% of lung adeno-
carcinomas, namely in non-smoker younger adults.53 
Crizotinib was the first ALK inhibitor with identified resis-
tance emerging from two major secondary mutations, 
L1196M and C1156Y.53,63 Alectinib is a second-generation 
ALK inhibitor with high selectivity for ALK rearrangements 
that overcomes these two mutations.64 Brigatinib, ceritinib, 
and lorlatinib are also specific inhibitors that can overcome 
resistance through other secondary mutations.42 Thus, in 
case of resistance, and although it is not included in the 
international guidelines62, tissue re-biopsy or liquid biopsy 
for NGS analysis can be a potential tool for the choice of a 
subsequent ALK inhibitor.42,53,65-67

 ROS1 rearrangements are less common than ALK rear-
rangements and share approximately 70% of homology.53 
Crizotinib has also shown activity in ROS1 rearrange-
ments and is approved for this indication.42,68 Entrectinib is 
a ROS1 inhibitor with the ability to penetrate and remain in 
the central nervous system. It is approved for the treatment 
of advanced NSCLC in ROS1 positive patients. Data from 
entrectinib and crizotinib approvals plus the ongoing trials 
with other inhibitors, highlight the need to test for ROS1 fu-
sion in NSCLC to broaden the therapeutic options in these 
patients.69 
 NGS is a validated technique for sequencing ALK and 
ROS1 rearrangements, with an advantage over immunohis-
tochemistry and fluorescence in situ hybridization (FISH) for 
detecting potential actionable molecular alterations.70

 Among the 1% - 2% of advanced NSCLCs with BRAF 
V600E mutation, 85% are adenocarcinomas.71 The combi-
nation of dabrafenib with trametinib, a MEK inhibitor, dem-
onstrated good results in previously untreated patients.72

 In NTRK fusion-positive NSCLC tumors, larotrectinib 
and entrectinib have shown effective results and are ap-
proved for the treatment of these patients.73 NTRK gene fu-
sions are present in 0.2% - 3.3% of NSCLC tumors and the 
approval was based on basket trials that included different 
solid malignancies.74-76 
 RET rearrangements are commonly found in younger 
patients below 60 years old, non-smokers, or former light 
smokers.77 So far, multikinase inhibitors (like cabozantinib, 
lenvatinib, and vandetanib) have been used off label for 
RET-positive NSCLC. Nevertheless, both the Food and 
Drug Administration (FDA) and the European Medicines 
Agency (EMA) have already approved more selectively 
targeted and potentially effective TKIs, like pralsetinib and 
selpercatinib.78,79 
 Mutations and amplification of MET are commonly found 
in elderly patients and non-smokers, and therapies such as 
crizotinib, capmatinib, and tepotinib have shown effective-
ness in treating these patients.80-82 Thus, MET should be 
included in earlier NGS panel tests.83 
 Besides these seven genes implemented in clinical 
practice, other target driver oncogenes have been stud-
ied in NSCLC, such as KRAS mutations and HER2 muta-
tions.42,53,83-85

 KRAS is the most commonly mutated oncogene in 

NSCLC (in approximately 30% of the patients), and al-
though it is not considered in the ESMO recommendations, 
it should be included in all NGS genomic panels since it is a 
prognostic biomarker.62,86 Moreover, KRAS mutations when 
associated with TP53 and STK11 co-mutations may be vul-
nerable to immunotherapy approaches.84,87,88 Aside from 
that, sotorasib and adagrasib, two novel KRAS G12C small 
molecule inhibitors, showed overall early promising results 
with antitumor activity and a manageable safety profile in 
heavily pre-treated patients with NSCLC.89,90

 HER2 mutation in NSCLC is an oncologic driver muta-
tion that is a promising target for treating patients with ad-
vanced disease that progressed on or after platinum-based 
therapy. Trastuzumab deruxtecan has promising results in 
this context.85  
 Repotrectinib is a novel next-generation ROS1-TKI in-
hibitor with promising results, namely high activity in the 
central nervous system, in ROS1 positive and recalcitrant 
crizotinib-resistant G2032R mutation NSCLC.91 
 A summary of the approved therapies and under clinical 
investigation is summarized in Table 1.

 Should an NGS-based liquid biopsy be performed in 
lung cancer?
 Recommendation: Liquid biopsy for NGS evaluation 
of actionable mutations can be performed, if validated, at 
diagnosis or in cases of resistance/progression under tar-
geted therapy when a tissue biopsy cannot be performed. 
Moreover, liquid biopsies can complement tissue biopsies, 
providing an in-depth idea of tumor heterogeneity. 

 Tissue biopsies remain irreplaceable as the basis for 
histopathological diagnosis. Liquid biopsies (circulating 
cell-free tumor DNA) are routinely used to detect resistance 
mutations upon progression on TKIs, such as EGFR T790M 
mutation after first-line therapy with EGFR inhibitor, to ad-
dress intra-tumor heterogeneity and also in the detection of 
new mutations.110 In the context of diagnosis, liquid biopsy is 
recommended in the following specific situations36,111:

• tissue biopsy is not safe, contraindicated, or de-
clined by the patient;

• the quantity and quality of tumor tissue is not enough 
for a correct molecular diagnosis;

• delay is expected to occur in the availability of tumor 
tissue. 

 In case of resistance to first or second-line EGFR-TKI, 
NGS using circulating cell-free DNA has shown high sensi-
tivity, identifying multiple resistance alterations.112,113  
 Recently, the FDA approved a pan-cancer cell-free DNA 
(cfDNA) based comprehensive genomic profiling assay for 
cancers of solid origin.114 cfDNA is isolated from plasma de-
rived from anti-coagulated peripheral blood of cancer pa-
tients collected in specific tubes.114   Apart from the in vitro 
diagnosis of a high number of target genes and although 
these biomarkers are currently not validated in lung cancer, 
these tests also allow the assessment of TMB (tumor mu-
tational burden), MSI (microsatellite instability), and tumor 
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fraction values. 
 Also, in case of resistance to an ALK inhibitor, tissue 
re-biopsy or liquid biopsy for NGS analysis enables the 
evaluation of the resistance mutation profile to first-line 
therapy. However, this is currently not really necessary for 
the choice of the second-line ALK inhibitor.42,53,65-67

 Although some reports show some discrepancies be-
tween tissue- and liquid- biopsies, this could be due to the 
intrinsic differences of the sample, assays, bioinformatics 
tools, and tumor heterogeneity.8 Each liquid biopsy test 
must be validated. There are already commercially ap-
proved NGS-based liquid biopsy tests based on a clini-
cally validated comprehensive cell-free DNA analysis that 
identifies recommended biomarkers at the rate as high as 
standard-of-care tissue genotyping, with high tissue concor-
dance.115,116

Rare tumors
 Rare Cancers Europe defines rare cancers as occur-
ring in fewer than six out of 100 000 people each year.117 
This type of tumor includes, among others, sarcomas 
and cancers of unknown primary and are more difficult to 
prevent, diagnose and treat than other types of cancer.118 

Tissue samples from 5945 patients with refractory and un-
derexplored cancer types were analyzed in the clinical trial 
National Cancer Institute Molecular Analysis for Therapy 
Choice (NCI-MATCH). The results showed that actionable 
genomic alterations were present in 11.9% of samples and 
resistance mutations were present in 71.3% of the speci-
mens. The authors conclude that NGS is feasible and can 
help sort patients to investigational therapy in genetically 
complex tumors.119

Sarcomas
 Sarcomas are rare mesenchymal malignancies that 
include at least 100 different subtypes.120,121 Diagnosis is 
based on morphological, immunohistochemical, and mo-
lecular characterization, although a differential diagnosis is 
often difficult.121 In the most recent years, a significant num-
ber of translocations have been described, helping in the 
diagnosis and characterization of sarcomas. Nevertheless, 
in clinical practice, targeted therapies are still poorly imple-
mented, except for some subtypes such as gastrointestinal 
stromal tumor (GIST) and the use of pazopanib in soft tis-
sue sarcomas.122-124

Table 1 – Targeted therapies for genomic alterations in advanced NSCLC

Genomic alteration Targeted therapy
 Approved

   EGFR-activating mutations Gefitinib92

Erlotinib93

Afatinib94

Dacomitinib95

Osimertinib96

   ALK translocation and rearrangements Crizotinib97

Alectinib98

Ceritinib99

Brigatinib100

Lorlatinib101

   ROS1 translocation and rearrangements Crizotinib97

Entrectinib102

   BRAF V600E mutation Dabrafenib with trametinib103,104

   NTRK fusions Larotrectinib105

Entrectinib102

   MET mutation and amplification Capmatinib106

Tepotinib82

   RET translocation and rearrangements Pralsetinib107

Selpercatinib108 

 In clinical trials
   HER2 mutation Trastuzumab deruxtecan85

   KRAS mutation Sotorasib89

Adagrasib109

   ROS1 translocation and mutation Repotrectinib91
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 How can NGS be used in sarcomas?
 Recommendation: NGS is a valuable tool in the man-
agement of sarcomas. Comprehensive genomic profiling 
NGS panels are already available, but they are expensive. 
More data is essential and therefore patients should be 
included in biomarker-driven clinical trials when available. 
These patients should be managed in centers with a consid-
erable number of patients/year and multidisciplinary teams. 

 A NGS panel containing probes for 87 fusion genes 
and seven genes with frequent copy number alteration was 
designed and applied on 113 DNA samples extracted from 
FFPE samples of soft-tissue and bone sarcomas. FISH or 
RT-PCR had already analyzed these samples and the re-
sults showed that NGS is a feasible and cost-effective ap-
proach allowing to test a wide range of genomic aberrations 
at the same time, which can be very useful for the differen-
tial diagnosis of sarcomas.121

 Current therapy includes cytotoxic chemotherapy drugs 
and tyrosine kinase inhibitors such as pazopanib for most 
patients with metastatic sarcomas.125 Other approved tar-
geted therapies for actionable mutations are imatinib, suni-
tinib, and regorafenib for GIST and imatinib for dermatofi-
brosarcoma protuberans.122,126

 A recent study involving 133 tumor samples from pa-
tients diagnosed with different types of sarcomas analyzed 
over 400 cancer-related genes and found that most mu-
tations are in genes related with the cell cycle, including 
TP53, CDKN2A/B and RB1, with 75 mutations occurring in 
targetable genes. Tumor mutational burden and microsat-
ellite instability were generally low.125 Another study using 
comprehensive genomic profiling also showed that among 
different types of sarcoma such as leiomyosarcoma, dedif-
ferentiated liposarcoma, osteosarcoma, well-differentiated 
liposarcoma, carcinosarcoma and rhabdomyosarcoma, 
93% of patients had at least one genomic alteration with a 
mean of six mutations per patient.122

 Besides actionable mutations, chromosomal translo-
cations and fusion genes were common among different 
types of sarcomas, such as rhabdomyosarcoma, Ewing’s 
sarcoma, synovial sarcoma, and liposarcoma.127 The re-
sulting chimeras have altered functions and potential onco-
genic activity.128 This could increase the possibility of using 
a targeted therapy even in combination with conventional 
chemotherapy.127 Immunotherapy, even in combination with 
other therapies, could be another option for sarcomas with 
high MSI and/or high TMB.129 NTRK fusions are rare ge-
nomic alterations that can be present in several sarcoma 
subtypes and have been identified as an agnostic biomark-
er for the treatment response with entrectinib and larotrec-
tinib.130,131   
 Taken together, these results highlight the importance 
of incorporating comprehensive panels in the diagnosis and 
management of sarcoma, thus allowing a more precise dif-
ferential diagnosis, treatment and the inclusion of patients 
in basket clinical trials. 

Cancers of unknown primary 
 Cancers of unknown primary (CUP) account for ap-
proximately 3% - 5% of all tumors. CUPs can be divided 
into two main subgroups, with very different prognosis.132 
Approximately 85% of the diagnosed CUPs are included in 
the category of neoplasms with poor prognosis and short 
overall survival.132,133 These are a group of heterogeneous 
metastatic tumors in which it is not possible to identify the 
site of origin and are the main focus of this subchapter. The 
treatment of these tumors is mainly based on chemothera-
py regimens guided by histopathological features and likely 
site of origin. However, the results are not encouraging.133

 How can NGS be used in cancers of unknown pri-
mary? 
 Recommendation: This type of tumor should be treated 
in centers with many patients/year. Since the only available 
therapy for CUPs with a poor prognosis is chemotherapy, 
the inclusion of these patients in Clinical Trials should be 
encouraged. Comprehensive NGS panels should be per-
formed earlier in CUP, aimed at helping diagnose and direct 
therapy. Nevertheless, NGS testing must not delay the be-
ginning of the approved therapy. The best strategy for each 
patient should be discussed on an individual basis and in 
multidisciplinary meetings.

 NGS could represent a new option for these patients, 
providing insights into tumor biology, identifying potentially 
targetable genomic alterations aiming at personalizing the 
treatment of CUPs.134 Comprehensive genomic profiling 
by NGS in CUP133,135,136 has shown that although it was not 
possible to find a CUP-specific molecular signature,136 al-
most all CUP samples have at least one clinically relevant 
genomic alteration that could influence personalized thera-
py.135

 A recently published systematic review also showed 
that 85% of CUPs harbored at least one genomic alteration 
and 47.3% presented a potentially targetable alteration for 
approved/off-label/clinical trial available drugs.134 The key 
mutated genes were TP53, RAS, CDKN2A, MYC, ARID1A, 
PIK3CA, or BRAF, which are not tissue-specific.137-139 
 One of the comprehensive CUP analyses also evalu-
ated response to immune checkpoint blockade therapy. 
Mutations in 592 genes and 52 gene fusions in 389 cases 
of CUP were analyzed. TMB and MSI were calculated from 
the NGS results and showed that 11.8% of CUPs have high 
TMB and 1.8% MSI.139 Thus, the multiplex testing approach 
calculated that 28% of CUPs harbored one or more predic-
tive biomarkers (high-MSI, PD-L1, and/or high-TMB) to im-
mune checkpoint blockade.139 
 Treatment decisions based on genomic alterations iden-
tified in CUP are only reported in case-studies since clinical 
trials are still ongoing.140 A recently published non-random-
ized phase II clinical trial, conducted in Japan and involving 
97 previously untreated patients with an unfavorable sub-
set of CUP, showed that the gene expression profile and 
genomic alterations identified by NGS contributed to the 
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site-specific treatment of patients.141

 The CUPISCO study is a phase II clinical trial for a 
CUP population that, through NGS techniques, will com-
pare the efficacy and safety of targeted therapy or cancer 
immunotherapy versus platinum-based chemotherapy. 
The tested drugs include alectinib, vismodegib, ipatasertib, 
olaparib, erlotinib, bevacizumab, vemurafenib, cobimetinib, 
trastuzumab, pertuzumab, atezolizumab, carboplatin, pacli-
taxel and gemcitabine.142

 One of the problems of tissue-agnostic therapy is the 
extrapolation of therapeutic actionability since the clinical 
activity of the mutations could differ between cancer tis-
sues.134,140 So far, putative primary sites have always been 
considered in CUP therapy.134

 Nevertheless, the Cancer Genome Atlas demonstrated 
recently that the tissue of origin of a tumor might be less 
critical to prognosis and response to therapy than the iden-
tification of targetable mutations and optimal predictive bio-
markers.143,144 

FINAL CONSIDERATIONS
 In which additional tumor types should NGS be ap-
plied as a diagnostic and therapy management tool or 
as a guide to clinical trials?
 In these Portuguese consensus recommendations, lung 
cancer, sarcomas, and CUPs were included as the main 
types of solid tumors in which NGS must be performed for 
accurate tumor characterization and therapeutic decision. 
Nevertheless, there are other types of solid tumors, namely 
metastatic breast, and colorectal cancer, that may benefit 
from NGS use. According to the latest ESMO recommenda-
tions, NGS should be routinely used  in patients with pros-
tate cancer, ovarian cancers, and cholangiocarcinoma.13 
Patients with breast, colorectal, pancreatic and hepato-
cellular cancer should be included in clinical research for 
molecular screening programs proposing access to clinical 
trials with innovative agents.13 
 Comprehensive analysis of different types of cancers 
such as  lung, colorectal, breast, ovarian, and sarcoma 
demonstrated that high-throughput techniques could iden-
tify an actionable mutation in a high percentage of cases, 
with clinical benefit in 25% of the patients.145 Of the patients 
broadly tested by NGS, 37% have at least one clinically rel-
evant mutation that could be targeted, cost-effectively, with 
either an off-label therapy or included in a clinical trial.146 
In the context of immuno-oncology, NGS is also an emerg-
ing technology through the identification of tumors with high 
MSI and TMB that will determine whether the patient is like-
ly to respond to immunotherapy.147,148

 The contribution of NGS to the deep understanding of 
genomic alterations that could occur in various tumor types 
has been studied in clinical trials, namely basket trials.149 
Basket trials include patients that harbor the same genomic 
alteration regardless of the histology.131 These trials are 
of particular interest for patients with hard-to-treat tumors, 
which are commonly advanced tumors after multiple lines of 
therapy and rare malignancies.150 Different basket trials have 

been designed and developed to detect genomic alterations 
that have a clinical benefit to patients with intractable can-
cers.149,150 The results of different basket trials have demon-
strated that molecular-targeted cancer therapy could ben-
efit unmanageable cancers; nevertheless, there is a need 
to improve the selection of the molecular alterations.151-174 In 
Portugal, there are two ongoing biomarker-driven clinical tri-
als in solid tumors with FGF/FGFR aberrations175 and NTRK 
Fusion-Positive Tumors.176 The TAPISTRY trial, a phase II 
global multicentric study that evaluates the safety and ef-
ficacy of targeted therapies or immunotherapy in patients 
with an unresectable, locally advanced or metastatic solid 
tumor that harbor actionable genomic alteration or high 
TMB validated by NGS, is currently recruiting in Portugal.177

 Finally, evaluation of patient outcomes showed that 
NGS testing could positively impact progression-free sur-
vival with manageable healthcare costs178 and improved 
clinical outcomes in 33% of metastatic cancer patients with 
“hard to treat” disease.153 
 Thus, the benefit of NGS testing may impact the man-
agement of cancer patients, regardless of tumor type. Apart 
from the previously mentioned indications (non-squamous 
NSCLC, sarcoma, and CUP), NGS can be proposed for 
patients with metastatic disease, pending the discussion 
between the patient and the attending clinician of the ex-
pected benefits and the economic evaluation by the health-
care payer.8

CONCLUSION
 NGS is a powerful technique that can identify predictive 
biomarkers for a targeted therapy that otherwise might not 
be considered. With this information, along with the exper-
tise of multidisciplinary molecular tumor boards, clinicians 
will develop an optimal treatment plan for their patients. At 
this time, non-squamous NSCLC, sarcomas, and CUP are 
the main tumor types in which NGS should be used. How-
ever, in metastatic patients, NGS can be considered for all 
types of tumors where the standard of care has been ex-
hausted and targeted therapy is still possible, especially if 
clinical trial participation is considered. NGS should also be 
considered if a new drug is available or there is a high clini-
cal suspicion of the presence of a rare mutation. Further-
more, NGS data should be integrated with medical records 
and hospital information systems, allowing the creation of 
data repositories for clinical investigation. These approach-
es will allow for more patients to be treated with different 
therapeutic options. 
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