RED CELL ABNORMALITIES IN A KINDRED WITH AN UNCOMMON FORM OF HEREDITARY SPHEROCYTOSIS

GABRIEL OLIM, SANDRA MARQUES, CARLOTA SALDANHA, DULCE SANTOS, PAULO BARROCA, J. MARTINS E SILVA

Department of Biochemistry - Faculty of Medicine and Hematology Unit - Department of Medicine III. Santa Maria University Hospital. Lisbon. Portugal.

SUMMARY

Red cell acetylcholinesterase (AChE) and Na\(^+\) K\(^+\) - adenosinetriphosphatase (ATPase) activities, cell 2,3 - diphosphoglycerate (2,3 - DPG) and adenosinetriphosphate (ATP) content and filterability ratio were studied in two children (with moderate hemolytic anemia and marked spherocytosis) and their parents. Patients' parents have no medical problem but evidenced discrete spherocytosis on peripheral smear. Except some increased apparent red cell rigidity detected in the father, all the parameters studied in both parents were found to be normal, as compared to healthy controls. In contrast, red cell rigidity, 2,3-DPG and ATP levels and Na\(^+\) K\(^+\) ATPase activity were increased in both children, whereas AChE activity was similar to values of normal subjects. These observations suggest that both affected patients suffered from homozygous hereditary spherocytosis linked to an apparently recessively inherited red cell membrane defect.

INTRODUCTION

Hereditary spherocytosis (HS) is a heterogenous disorder, either clinically or in terms of the molecular defects, in apparent association with a primary abnormality of the red cell membrane. Although in the majority of the cases the biochemical defect is still uncertain, in a small group of patients exhibiting marked spherocytosis skeletal protein changes involving the spectrin molecule have been described. These abnormalities might result in membrane instability, red cell fragmentation under circulatory stress and/or loss of erythrocyte deformability.

The increased permeability to sodium (Na) ions observed in intact erythrocytes is another functional deficiency of HS cells, perhaps due to structural changes in the membrane. In addition to the differences reported in the several classes of red cell membrane ATPase, there is also some evidence that the profile of acetylcholinesterase (AChE) activity from HS patients is clearly distinct from other hemolytic anemias.

In the present paper we focus attention on red cell membrane Na\(^+\) K\(^+\) - ATPase and acetylcholinesterase (AChE) activities, in association to the index of erythrocyte filterability (IF), adenosinetriphosphate (ATP) and 2,3 - diphosphoglycerate (2,3 - DPG) concentrations, from two siblings (the sons of related but normal parents) affected with inherited spherocytosis.
MATERIAL AND METHODS

Case reports and routine evaluation - A suggestive form of hereditary spherocytosis was detected in a twelve-year-old white boy (patient 1) first seen by us for clear anemia, skeletal abnormalities and hepatosplenomegaly. A similar clinical situation was soon observed in patient 2, a five-year-old brother of patient 1. Both patients, still non-splenectomized at the moment, showed hemolytic anemia characterized by hemoglobin values ranging from 7 to 8 g/dl, elevated reticulocyte count, spherocytes on peripheral smear and mild elevation of unconjugated bilirubin. The most important routine laboratory findings of both siblings and their parents (fourth degree cousins) are summarised in Table 1.

In contrast with the physical and hematologic abnormalities found in both siblings, either parent has had any clinical problem and both had normal physical and routine laboratory tests. However, a small percentage of spherocytes as well as poikilocytes and increased reticulocyte count (3-4, 5%) were observed in blood smears of both parents.

In all members of this family there was no abnormal hemoglobin detected, HbA2 and HbF levels were not raised, Coombs' tests (direct and indirect) were negative and enzyme activities of red cell pyruvate-kinase and glucose 6-phosphate dehydrogenase were found to be comparable to those of normal subjects.

Procedures - Blood from each patient and both parents was drawn into vacutainer tubes containing heparin or acid citrate dextrose as anticoagulants, and immediately subdivided into aliquots before being processed further.

Red cell morphology, blood cell counts, immediate osmotic fragility, autohemolysis in vitro, direct and indirect Coombs' tests, hemoglobin electrophoresis and total and unconjugated bilirubin were performed by routine laboratory techniques.

RESULTS

The results for the red cell studied parameters in all members of the family are shown in Table 2. Red cell AChE activity of patients and their parents failed to show any consistent variation from the normal pattern. Membrane Na+ K+-ATPase activity was determined as the release of inorganic phosphate during incubation of ghosts with ATP, according to the technique of Taussky et al.15

The erythrocyte filterability index was carried out by a modification of the method of Reid et al.16 using Nucleopore polycarbonate sieves (Nucleopore Corp, Pleasanton, U.S.A.), with a pore diameter of 5 μm; erythrocytes suspended in Tris-albumin buffer (pH 7.4) at a hematocrit of 8% were used for testing and compared to the filtration time of the solvent; the calculated index of filtration incorporated a correction for measured hematocrit.17

<p>| TABLE 1 Standard hematologic data on members of the family studied |
|----------------------|------------------|--------------------------|------------------|</p>
<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin (g/dl)</td>
<td>7.6</td>
<td>7.1</td>
<td>13.7</td>
</tr>
<tr>
<td>Hematocrit (1/l)</td>
<td>0.22</td>
<td>0.22</td>
<td>0.45</td>
</tr>
<tr>
<td>Red cell count (x 10¹²/l)</td>
<td>2.7</td>
<td>2.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Mean corpuscular volume (fL)</td>
<td>81.5</td>
<td>84.6</td>
<td>90.0</td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin concentration (g/dl)</td>
<td>34.5</td>
<td>32.3</td>
<td>30.4</td>
</tr>
<tr>
<td>Reticulocytes (%)</td>
<td>7</td>
<td>18.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Leucocyte count (x 10⁹/l)</td>
<td>9.7</td>
<td>5.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Platelet count (x 10⁹/l)</td>
<td>300</td>
<td>360</td>
<td>300</td>
</tr>
<tr>
<td>Total bilirubin (mg/dl)</td>
<td>2.5</td>
<td>—</td>
<td>0.43</td>
</tr>
<tr>
<td>Unconjugated bilirubin (mg/dl)</td>
<td>1.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Serum iron (mg/dl)</td>
<td>87</td>
<td>128</td>
<td>141</td>
</tr>
<tr>
<td>Total iron binding capacity (mg/dl)</td>
<td>187</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Coombs tests (direct and indirect)</td>
<td>negative</td>
<td>negative</td>
<td>—</td>
</tr>
<tr>
<td>Hemoglobin F (%)</td>
<td>2.5</td>
<td>2.0</td>
<td>—</td>
</tr>
<tr>
<td>Hemoglobin A2 (%)</td>
<td>3.5</td>
<td>3.0</td>
<td>—</td>
</tr>
<tr>
<td>Osmotic fragility (g/1 NaCl)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.5</td>
</tr>
<tr>
<td>hemolysis begins 50% hemolysis (normal range: 4.0-4.45)</td>
<td>4.65</td>
<td>4.45</td>
<td>4.35</td>
</tr>
<tr>
<td>Autohemolysis 37°C (%)</td>
<td>—</td>
<td>—</td>
<td>5.1</td>
</tr>
<tr>
<td>48 h, without added glucose (normal range: 0.2-4.5)</td>
<td>6.0</td>
<td>4.9</td>
<td>5.1</td>
</tr>
<tr>
<td>48 h, with added glucose (normal range: 0-0.5)</td>
<td>1.21</td>
<td>0.95</td>
<td>0.73</td>
</tr>
<tr>
<td>Blood peripheral smear</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>spherocytic RBC</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>nucleated RBC</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>poikilocytosis and fragmented RBC</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>anisocytosis</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>echinocytic RBC</td>
<td>—</td>
<td>—</td>
<td>±</td>
</tr>
</tbody>
</table>

* Semi-quantitative results in a range of 0.4+; RBC = red blood cells.
HEREDITARY SPHEROCYTOSIS

the 2,3-DPG concentration. No clear variation on ATP levels was detected in all members of the family. As far as the index of red cell filtration is concerned, the increased values observed in both patients and, also in their father, might indicate a loss of deformability, in contrast to the normal value detected in the mother.

DISCUSSION

Hereditary spherocytosis seems to be the result of structural defect of erythrocyte membrane, yet to be defined in the most frequent form. Usually this disorder occurs with discreet clinical symptoms and mild anaemia, in apparent dependence of a mendelian autosomal trait, perhaps with variable penetrance; no cases of homozygoty have been described.

The presence of spherocytic cells in all members of the family we have studied appears as an uncommon event. Although no clinical manifestations were apparent in the (distantly related) patients' parents, mild spherocytosis and other signs of presumed hemolytic compensation were detected on blood smear. In contrast, both siblings showed remarkable spherocytosis and other red cell abnormalities (Table 1), in association with clear clinical symptomatology.

The obvious poikilocytosis and the normal values of mean corpuscular hemoglobin concentration, as observed on these cases, are unusual laboratory events in HS. Although some confusion may arise with other spherocytic hemolytic anemias, it is unsafe to assume that one is not dealing with HS. In fact, the combination of anemia, increased reticulocytosis (particularly evident in patient 2), slight elevation of serum-indirect reacting bilirubin (in patient 1), spherocytosis, osmotic fragility (in patient 1), autohemolysis (in both), splenomegaly and skeletal abnormalities, as observed, support the diagnosis of HS.

Meanwhile, the reported negative Coombs' test and corrected autohemolysis by glucose excludes the diagnosis of immune spherocytosis; the differentiation from the various causes of splenomegaly and hypersplenism offered no doubt by the physical examination; the inexistence of red cell glucose 6-phosphate dehydrogenase and pyruvate-kinase deficiencies, or the absence of sickle cell trait and other hemoglobinopathies also distinguished the presenting cases from congenital non-spherocytic hemolytic anemias.

Such appearance may suggest that the patients are homozygous for a recessive trait, responsible for a congenital hemolytic anemia with the main characteristics of hereditary spherocytosis.

In addition, both patients clearly exhibited decreased erythrocyte deformability, also observed in a slightest degree in their father. The reduced deformability, documented by various methods as a characteristic abnormality of HS erythrocytes, might be in the presenting cases a consequence of diminished surface area/volume ratio and/or reduced mechanical stability of spherocytic membranes.

As a consequence of a reduced deformability, progressive membrane loss and cell fragmentation occurs in the circulation and might be related to the severity of hemolysis and resulting anemia in HS patients. In fact, the abnormally osmotic properties and decreased lifespan of HS erythrocytes have been attributed to a diminished surface area/volume ratio also suggested as the primary factor leading to decreased deformability. In addition, the reduced surface area/volume ratio appears to be correlated with the degree of splenic rigidity.

Although our patients' parents also presented spherocytic cells, the percentage of their expected undeformable cells was not sufficient to produce the hematologic pattern of typical HS, but a discreet reduced erythrocyte deformability in the father.

For the majority of HS patients, the red cells have a normal discocytic shape and about normal osmotic and membrane properties; only a variable subpopulation of truly spherocytic cells accounts for the difference in deformability and the degree of the anemia. So far, the moderate anemia and osmotic fragility showed in both siblings might be explained by a remarkable percentage of underformable spherocytes, as observed.

As a likely consequence of the red cell fragmentation, the increased 2,3-DPG content found in both patients could account for reduced oxygen affinity of hemoglobin and hence more oxygen being released to the hypoxic tissues. Our data oppose former results of low 2,3-DPG levels in HS patients, also with intact spleen, but are in agreement with more recent results of increased red cell 2,3-DPG content in HS children. The alteration in red cell 2,3-DPG levels might be also governed by some other metabolic factors, namely the overall rate of erythrocyte glycolytic pathway.

Although the rate of glycolysis is decreased in human erythrocytes containing high concentrations of 2,3-DPG under in vitro conditions, the concentration of ATP were found to be slightly elevated in high DPG cells. Furthermore there is no evidence of a major decrease in the levels of ATP when 2,3-DPG concentration increases in various hypoxic conditions.

The major cation flux abnormality in HS cells appears to be an excessive sodium permeability. HS cells oppose the

TABLE 2 Red cell 2,3-diphosphoglycerate and adenosinetriphosphate concentration, filterability ratio, membrane acetylcholinesterase and Na, + K - adenosinetriphosphate activities

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Mother</th>
<th>Father</th>
<th>Normal controls (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3 - diphosphoglycerate (µmoles/gHb)</td>
<td>18.4</td>
<td>21.6</td>
<td>11.6</td>
<td>12.5</td>
<td>12.5 ± 1.8</td>
</tr>
<tr>
<td>Adenosinetriphosphate (µmoles/gHb)</td>
<td>6.7</td>
<td>5.5</td>
<td>4.4</td>
<td>3.8</td>
<td>5.9 ± 1.1</td>
</tr>
<tr>
<td>Filterability ratio</td>
<td>no filtration</td>
<td>12.2</td>
<td>34.4</td>
<td>13.9 ± 2.2</td>
<td></td>
</tr>
<tr>
<td>Acetylcholinesterase (U/min/mgHb)</td>
<td>232</td>
<td>230</td>
<td>229</td>
<td>280</td>
<td>231.7 ± 52.5</td>
</tr>
<tr>
<td>Na, + K - ATPase (µmoles phosphate/mg membrane protein)</td>
<td>0.316</td>
<td>0.548</td>
<td>0.109</td>
<td>0.144</td>
<td>0.160 ± 0.085</td>
</tr>
</tbody>
</table>
abnormality high Na⁺ influx by increased pumping, dependent of higher ATP generation by glycolysis. The higher than normal Na⁺, K⁺ ATPase activity observed in both siblings, confirming former studies in HS patients, could be a reflection of an excessive sodium permeability in HS cells, being the Na⁺ pumping sustained by increase glycolysis; thus an elevation in ATP levels (with parallel increase of 2,3 - DPG) might be required to maintain the ion pumping. However, such gain in intracellular ATP was not evident in our study, and seems dissociated of increased 2,3 - DPG levels.

In HS cells, the Na⁺, K⁺ - ATPase was shown in correlation with the rate of sodium efflux; however, none of these parameters seems to influence the red cell survival. In addition, neither the HS cells became spherical due to an increase in total cation and water content nor the spheroidal shape itself is responsible for increased glycolysis; similar abnormalities in cation flux and pumping are also found in some other hemolytic or nonhemolytic disorders.

All these observations suggest that excessive sodium permeability and erythrocyte metabolic adaptation, as well as some other described characteristics of HS cells (e.g. spherocytosis, increased osmotic fragility, changes in membrane lipids or abnormalities in membrane proteins and lipid phosphorylation) are secondary to basic structural changes in red cell membrane. This view seems to be also partly supported in a recent study, where the profile for erythrocyte membrane acetylcholinesterase in HS was clearly distinct of normal and some other hemolytic anemias; the elevation of AChE activity was detected exclusively by using an ionic substrate and was incompatible with a lipophytic one, perhaps due to a more fully exposition of the enzyme molecules at the outer membrane side; however the AChE activity was not influenced by the spherocytic shape.

Conversely, we were unable to confirm by similar methodology an elevation of erythrocyte AChE activity in our patients or their parents. This discrepancy between our results and those of Striechman et al. may be due to changes that particular cytoskeletal membrane interactions may impose to the AChE molecules, in dependence of the transmembrane control of integral membrane protein distribution.

In spite of all spherocytosis is not the same and the underlying molecular abnormality is still undefined for the majority of HS patients, most data point towards the red cell membrane cytoskeleton as being the site of the primary genetic defect in HS.

In this regard and associated to the heterogeneity in inheritance, the basic lesion in HS might reflect diverse abnormalities of the membrane cytoskeleton, perhaps as final consequence of many distinct biochemical defects, as recently suggested.

The clinical course and uncommon inheritance pattern of our patients may be related to a still unexplored membrane defect. Further investigations upon the red cell membrane characteristics in this family are now in progress in our laboratory.

ACKNOWLEDGMENTS

This study was supported in part by a grant from INIC (MbL2). The technical assistance of Mr. Chim W. San is gratefully acknowledged. The authors also thank Miss Emilia Alves for typing the manuscript.

REFERENCES

Address for reprints: J. Martins e Silva
Biochemistry Department
Faculty of Medicine
Santa Maria University Hospital
1600 Lisbon, Portugal.